6.1 Radian Measure

A Angles	
Angle is the region between <i>two rays</i> (called <i>arms</i>) starting from the same end-point called the <i>vertex</i> of the angle. One line split the plan in two angles called <i>straight</i> angles. Two perpendicular lines split the plan in four angles called <i>right</i> angles. Any angle less than a right angle is called <i>acute</i> angle. Any angle greater than a right angle and less than a straight angle is called <i>obtuse</i> angle. An angle that is greater than a straight angle is called <i>reflex</i> angle. If the arms are coincident then a <i>full turn</i> angle is formed.	
B Sign	
If the rotation of the initial arm toward the terminal arm is a <i>counter clockwise</i> rotation the angle is considered <i>positive</i> . Otherwise the angle is <i>negative</i> .	
C Standard Position	D Degrees
If the <i>initial arm</i> is <i>parallel to the x-axis</i> then the angle is in standard position.	The measurement of a <i>right angle</i> in degrees is (by convention) 90° .
Ex 1. Find the measurement of each angle (given in star	ndard position) in degrees.
a) b) t t t t t t t t t t t t t	c) $d)$ t
e) f) f)	g) h) f
i) j) , j)	

 D Conversion formula The <i>conversion</i> between degree and radian measure is based on the equality: 180° = π radians Ex 4. Do the required conversions. a) 10° = ? radians b) -1° = ? radians 	which is equivalent to: $1^{\circ} = \frac{\pi \ radians}{180} \text{or}$ $1 \ radian = \frac{180^{\circ}}{\pi}$ c) $\sqrt{2} \ radians = ?^{\circ}$ d) $-0.1 \ radians = ?^{\circ}$
Ex 5. Complete the diagram with the angles expressed in degrees and radians.	
E Arc Length The arc length subtended by the angle θ (in radians) on a circle of radius <i>R</i> is given by: $s = \theta R$	Ex 6. Find the length of the arc subtended by an angle of 50° on a circle of radius $30cm$.
F Sector Area The sector area delimited by an angle θ (in radians) and a circle of radius <i>R</i> is given by: $A = \frac{1}{2}\theta R^{2}$	Ex 7. Find the area delimited by an angle of 120° and a circle of radius 10 <i>cm</i> .

Reading: Nelson Textbook, Pages 316-320 Homework: Nelson Textbook, Page 321: #5, 6, 7abc, 8abc, 11, 16